- [4] J.D. Hem, US. Geol. Surv. Wat.-Supp. Pap. 1667-A, Washington (1963).
- [5] R. Näsänen, Z. physik. Chem. 191 A, 54 (1942).
- [6] J.D.Hem, J. chem. Eng. Data 8, 99 (1963).
- [7] R.M.Garrels, M.E. Thompson & R. Siever, Amer. J. Sci. 258, 402 (1960).
- [8] F. Ageno & E. Valla, Atti Accad. naz. Lincei, Rend. Classe Sci. fis. mat. nat. 20, 706 (1911).
- [9] O. Hähnel, J. prakt. Chem. 108, 187 (1924).
- [10] O. Ruff & E. Ascher, Z. anorg. Chem. 185, 369 (1930).
- [11] H.S.Harned & B.B.Owen, "The Physical Chemistry of Electrolytic Solutions", 3rd ed., p. 692, 758, 762. Reinhold, New York 1958.
- [12] P. Schindler, M. Reinert & H.Gamsjäger, Helv. 51, 1845 (1968).
- [13] A. J. Hegedüs & K. Martin, Mikrochim. Acta 833 (1966).
- [14] G. Biedermann & P. Schindler, Acta chem. scand. 11, 731 (1957).
- [15] H.Gamsjäger, H.U. Stuber & P. Schindler, Helv. 48, 723 (1965).
- [16] W. Biltz, Z. anorg. Chem. 220, 312 (1934).
- [17] G. Nilsson, T. Rengemo & L.G. Sillén, Acta chem. scand. 12, 868 (1958); M. Frydman, G. Nilsson, T. Rengemo & L.G. Sillén, ibid. 12, 878 (1958).
- [18] F. Rossini et al., Circ. Bur. Stand. Nr. 500 (1952).
- [19] D.D. Wagman et al., NBS Technical Note 270-1 Washington D.C. 1965.
- [20] L.H.Adami & L.G.King, Bur. Mines Rept. of Inv. 6495 (1964).
- [21] H.Gamsjäger, Mh. Chem. 98, 1803 (1967).
- [22] W. M. Latimer, "Oxidation Potentials", 2nd ed., Prentice Hall Inc. New York 1952.
- [23] G. Biedermann, Arkiv Kemi 9, 277 (1956).
- [24] G. Biedermann & L. Ciavatta, Arkiv Kemi 22, 253 (1964).
- [25] A.S. Brown, J. Amer. chem. Soc. 56, 646 (1934).
- [26] G. Biedermann & L.G. Sillén, Arkiv Kemi 5, 425 (1953).
- [27] W. Forsling, S. Hietanen & L.G. Sillén, Acta chem. scand. 6, 901 (1952).
- [28] L. Ciavatta, Arkiv Kemi 20, 417 (1963).
- [29] G.Gran, Analyst 77, 661 (1952).
- [30] L.G. Sillén, Acta chem. scand. 10, 186 (1956).
- [31] P. Schindler, H. Althaus, F. Hofer & W. Minder, Helv. 48, 1204 (1965).

34. Protonierung von Amino- und Hydroxypyrimidinen NMR-Spektren und Strukturen der Mono- und Dikationen¹)

von R. Wagner und W. von Philipsborn

Organisch-Chemisches Institut der Universität Zürich, Rämistrasse 76, CH-8001 Zürich

(13. I. 70)

Summary. Proton-NMR. spectra of amino- and hydroxypyrimidines including biologically important bases have been measured in four solvents: CF_3COOH , $CF_3COOH-SO_2$, FSO_3H and $FSO_3H-SbF_5-SO_2$ at 27° and $-55^{\circ}C$. In CF_3COOH mono-cations are formed, whereas in FSO_3H and $FSO_3H-SbF_5-SO_2$ double protonation occurs. In each case the structures of the protonated species are derived from the chemical shifts of CH, NH and OH protons and proton-proton spin coupling constants. A combination of the measurements described leads to a complete assignment of all proton resonances of the protonated pyrimidines. This approach is also recommended for the structural determination of heterocyclic compounds.

In früheren Mitteilungen [1] [2] wurde über Protonenresonanzspektren von Pteridinen, insbesondere Derivaten des 2-Amino-4-oxo-3, 4-dihydropteridins berichtet. Die

¹) Protonenresonanzspektren von Pteridinen, VII. Mitteilung VI vgl. [1].

hierbei verwendeten Lösungsmittel Trifluoressigsäure und Fluorsulfonsäure führen zur Ausbildung verschieden protonierter Spezies, deren Strukturen aus spektroskopischen Daten abgeleitet wurden. Diese Ergebnisse sowie die Ausdehnung der Protonierungsstudien auf Purine lassen eine genauere Kenntnis des Verhaltens entsprechend substituierter Pyrimidine wünschenswert erscheinen. Hierbei müssen vor allem die vielfachen Tautomeriemöglichkeiten der Kationen von Amino- und Hydroxyderivaten berücksichtigt werden. Protonenresonanzspektren von Pyrimidinen in sauren Medien sind bereits von verschiedenen Autoren [3] beschrieben worden, ohne dass das Ausmass der Protonierung, insbesondere in stark saurer Lösung in den einzelnen Fällen genauer studiert wurde. Nicht-wässrige Säuren bieten den Vorteil, dass die Spektren auch bei tieferen Temperaturen aufgenommen werden können. Hierdurch gelingt bei langsamem Austausch von NH- und OH-Protonen ihre vollständige Zuordnung und damit eine Festlegung der Protonierungsstufe und der tautomeren Struktur. Das im folgenden beschriebene Verfahren der Messung in mehreren Lösungsmitteln und bei verschiedenen Temperaturen erweitert die Anwendbarkeit der Protonenresonanz-Spektroskopie zur Strukturaufklärung heterocyclischer Verbindungen. Die Verwendung von Fluorsulfonsäure erlaubt ferner, in konventionellen Lösungsklärung schwerlösliche Substanzen zu vermessen.

In der vorliegenden Arbeit werden die Protonenresonanzspektren der sieben Pyrimidine 1–7 behandelt, welche in den Lösungsmitteln CF₃COOH, CF₃COOH–SO₂, FSO₃H und FSO₃H–SbF₅–SO₂ bei + 27° und – 55°C gemessen wurden.

Die hier aufgeführten Formeln für die Neutralmolekeln können auf Grund der bisherigen Studien²) über die Tautomerie substituierter Pyrimidine als die vorherrschenden tautomeren Strukturen betrachtet werden.

1. *Pyrimidin* (1). Die Spektren des Grundkörpers in den vier Lösungsmitteln sind in Fig. 1a-f abgebildet. In CF_aCOOH erscheinen nur die Signale der vier Vinylproto-

²) Vgl. hierzu etwa [4] [5].

Fig.1. NMR-Spektren von Pyrimidin (1) in a) $CF_3COOH, 27^\circ$; b) $FSO_3H, 27^\circ$; c) $FSO_3H, -55^\circ$; d), e), f) $FSO_3H-SbF_5-SO_2$, NH-Region bei 27°, -55° bzw. -70° .

Für alle untereinander gezeichneten Spektren gilt die gleiche Skala, falls nicht anders angegeben.

		Tabelle	1. NMR	-Daten von	t Amino- u	tor Hydrox	xyþyrimidin	nen				
Substanz	Lösungsmittel Te	emp. Chemisc	he Verschie	ebungen ð	[mdd]				Koppl	ungskons	stanten [Hz]
	·。]	C] H-N(1)	H-C(2)	H-N(3)	H-C(4)	H-C(5)	H-C(6)	-NH2 -OH				
									$\int_{1,2}^{1,2} =$	$J_{1,6} = J_{3,4}$	J _{2,5} .	$J_{4,5} = J_{5,6}$
Pyrimidin	CF ₃ COOH 27		9,83		$9,51; d^{a}$	¹) 8,34; td	9,51; d				1,1	5,6
(]	CF ₃ COOH-SO ₂ - 55	10	9,87		9,56; d	8,52;1	9,56; d					5,6
	FSO ₃ H 27	ħ	10,47		10,08; d	9,28; t	10,08; d					6,2
	- 55	5 14,15	10,34;t	14,15	9,98;1	9,19; t	9,98;1		5,1	6,5		6,2
	FSO ₃ H-SbF ₅ -SO ₂ 27	r 14,15; <i>t</i>	10,37;t	14,15; /	(q +	9,23;t	•		5,2		,	6,0
	- 55	5 14,0;(t)	10,34; t	14,0;(t)	9,94;1	9,16; t	9,94; <i>t</i>			6,4	1,2	6,4
									$J_{1,4} = I_{I}$	$J_{1,5} = I_{1}$	$J_{1,6} = I$	= J _{4,5}
						1			J 3,6	J 3,5	J 3, 4	75,6
2-Amino-	CF ₃ COOH 27				8,74; d	7,23; t	8,74; d	8,05				5,5
pyrimidin	CF ₃ COOH–SO ₂ – 55				8,91; d	7,44; t	8,91; d	8,87				5,5
(2)	FSO ₃ H 27	7 12,1		12,1	9,32;1	7,99; t	9,32; t	8,32			6,6	6,0
	- 55	5 11,75		11,75	9,26;t	7,92; t	9,26;t	8,18			7,6	6,1
	FSO ₃ H-SbF ₅ -SO ₂ 27	7 11,8		11,8	9,22; td	7,93;#	9,22;td	8,10	1,4	1,3	6,4	6,5
	- 55	5 11,6		11,6	9,19;1	7,86; t	9,19;t	8,04			7,5	6,5
									$J_{1,6} =$	$J_{3,4}$	$J_{4,5} =$	= J _{5,6}
2-Hydroxy-	CF ₃ COOH 27				8,99; d	7,24; t	8,99; d				6,2	
pyrimidin	CF ₃ COOH-SO ₂ - 55	5 12,35		12,35	9,00; d	7,39; t	9,00; d				6,1	
(3)	FSO ₃ H 27				9,22; d	7,84; t	9,22; d				6,2	
	- 55	5 12,75		12,75	9,55; t	8,36; t	9,55; t		6,5		6,1	
	FSO ₃ H–SbF ₅ –SO ₂ 27	7 12,6		12,6	9,56;1	8,47; t	9,56;t					
					9,39; td	8,23; td	9,39; td					
	1 55	5 12,8		12,8	9,53;1	8,43; t	9,53; t					
		12,5		12,5	9,38;1	8,22; t	9,38;1					
									$J_{1,2} \int$	$I_{1,5} = J_{1,6}$	J2,3 J	2,6 J 5,6
										3,5		
4-Hydroxy-	CF ₃ COOH 27		9,43; d			7,06; d	8,22; dd				Ţ	7 8,0
pyrimidin	CF ₃ COOH-SO ₂ - 55	12,9?	9,38	12,9?		7,18; d	8,32; d					8,0
(4)	FSO ₃ H 27	7 13,1	9,96; d			8,26; d	9,30; tđ		5,0	5,5	1	.2 7,5
	- 55	; 12,95	9,95; t	13,2		8,23; d	9,30;1		5,3	5,7	5,3	7,3
	FSO ₃ H–SbF ₅ –SO ₂ 27	, 13,0	+	13,0		8,21; dt	9,27; td	12,3	1	,1 5,7	1	2 7,2
	- 55	12,90	9,82; t	13,00		8,13; dt	9,20;td	12,45	2 5,6 1	,2 6,1	5,6 1	,1 7,6

302

Helvetica Chimica Acta – Vol. 53, Fasc. 2 (1970) – Nr. 34

									$J_{1,6}$		ſ	5,6	
2,4-Di-	CF,COOH	27	10.2		6.23: d	7.75; dd			5.1		1	6	
hydroxy-	CF ₃ COOH-SO ₂ -	55	10,37	11,06	6,36; d	7,91; dd			5,4		1	6	
pyrimidin	FSO ₃ H	27	11,35		7,37; d	8,75; <i>dd</i>			4,6		7	4	
(Uracil) (5)	1	55	11,63; d	12,34	7,54; d	8,84; t			5,3		7	4	
	FSO ₃ H-SbF ₅ -SO ₂	27	11,7	12,3	7,61; d	8,87; dd							
					7,44;dq	8,77;t							
	I	55	11,6; d	12,26	7,58; dd	8,86; dd		12,18					
			11,6; d	11,81	7,43; <i>dd</i>	8,75; dd		11,75					
									$J_{1,5}$	$J_{1,6}$	$J_{3,5}$	J _{3, 6}	J _{5,6}
2-Hydroxy-	CF3COOH	27	10,45		6,41;d	7,87; d	8,26						7,5
4-amino-							8,34						
pyrimidin	CF ₃ COOH-SO ₂ -	55	11,42; d		6,38; d	7,90; dd	7,75			5,7			7,7
(Cytosin) (6)		į					8,44 ?			1			1
	FSO ₃ H	17	10,9	-	1,22; da	8,29; <i>ad</i>	8,3			5,8	1,0		7,7
	Ι	55	10,79; d	10,97	7,23; d	8,26; t	8,19			6,4			7,7
							8,45						
	FSO ₃ H–SbF ₅ –SO ₂	27	10,7	10,95	7,19; dq	8,20; dda	8,2		1,1	5,9	2,2	1,0	7,8
	1	55	10,61;d	10,82	7,15; dq	8,15; dd	8,02	11,34	0,8	5,4	2,1		8,0
							8,29						
						-			$J_{1,5}$	$J_{1,6}$	J_3	,5	J _{5,6}
2-Amino-	CF ₃ COOH	27			6,32; d	7,79; d	8,10						8,0
4-hydroxy-	CF ₃ COOH-SO ₂ -	55	10,33; d		6,44; d	7,89; t	7,82			6,6			7,5
pyrimidin							8,24						
(Isocytosin)	FSO ₃ H	27		11,55	7,26; d	8,74; t	7,96			6,3			7,2
(2)	1	55	10,75; d	+	7,19; d	8,71; t	7,87			6,3			7,4
		Ę	1076.3	11 25	7 16. 3-	0 65 . 33	7 92	L L T	, ,	Ċ	Ċ	,	1
	rough-abr,-ou	7 7 7	10,65, <i>d</i>	11 16	7 10: d	0,00; aa	7 75	00,11 11 50	1,Z	0,0 9	ч, <u>-</u>	א א	9'. 2 v
		2					7,78	1		1	Ĥ	5	2
a) $d = Dub$ dq = Du b) $+ Disce$	where, $t = Triplett$, $dd =$ blett mit doppelter Du Reconnected voor	= dof ublett Täsn	ppeltes Dublett, <i>tt</i> t-Feinstruktur, <i>td</i>	= doppeltes Trij = Triplett mit I	olett, <i>ddd</i> = dreif Oublett-Feinstrul	achès Dub ktur,	lett, <i>dt</i>	= Dub	lett mi	t Triple	tt-Fei	nstrukt	l 1
venter	TTA A DITE HATTERNA		· mugieronninegin	CI NCVAL.									

Helvetica Chimica Acta – Vol. 53, Fasc. 2 (1970) – Nr. 34

303

nen als Triplett mit Feinstruktur bei 8,34 ppm (H–C(5)), Dublett bei 9,51 ppm (H–C(4) und H–C(6)) und Singulett bei 9,83 ppm (H–C(2)). Ausser der vicinalen Spinkopplung $J_{4,5} = J_{5,6} = 5,6$ Hz tritt nur die *para*-Kopplung $J_{2,5} = 1,1$ Hz auf. Dies steht im Einklang mit den Befunden am unprotonierten Pyrimidin [6], bei welchem stets ${}^{5}J_{para} > {}^{4}J_{meta}$ gefunden wurde. Die vicinale Kopplung ${}^{3}J_{ortho}$ ist in saurer Lösung, wie zu erwarten [7], grösser als bei der Neutralmolekel (${}^{3}J = 4,8 - 5,2$ Hz). In CF₃COOH–SO₂-Lösung bei -55° werden die gleichen Signale beobachtet. Auch in diesem Lösungsmittel werden keine NH-Resonanzen gefunden. Die bei Zimmertemperatur beobachteten chemischen Verschiebungen der Vinylprotonen sind denjenigen in CF₃COOH-Lösung sehr ähnlich.

In FSO₃H bleibt der Charakter des Spektrums erhalten, alle drei Signale sind jedoch stark nach tieferem Feld verschoben. Berücksichtigt man den durch den Wechsel des Lösungsmittels und des Standards hervorgerufenen Effekt $\Delta_{CF_4COH}^{FSO_4H} =$ +0,27 ppm [1], so betragen die Verschiebungen der Vinylprotonen +0,67 ppm für H-C(5), +0,30 ppm für H-C(4) bzw. H-C(6) und +0,37 ppm für H-C(2). Gleichzeitig steigt die vicinale Kopplungskonstante $J_{4,5} = J_{5,6}$ auf 6,2 Hz an. Diese Befunde zeigen, dass in FSO₃H eine weitere Protonierung stattfindet. Bei -55° ändert sich das Spektrum, und es werden drei Triplette für die Vinylprotonen beobachtet. Zusätzlich erscheint ein breites Signal bei 14,15 ppm (2H), welches zwei NH-Protonen zugeordnet werden muss. Die zusätzliche Aufspaltung der Vinylsignale kommt, wie sich aus Doppelresonanzmessungen ergibt, durch Spinkopplung der NH-Protonen mit den vicinalen CH-Protonen zustande: $J_{1,6} = J_{3,4} = 6,5$ Hz, $J_{1,2} = J_{2,3} = 5,1$ Hz. Die Erniedrigung der Messtemperatur bewirkt in FSO₃H eine geringfügige Verschiebung der Pyrimidinsignale nach höherem Feld (siehe Tab. 1), während das Lösungsmittelsignal sich nach tieferem Feld verschiebt.

Eine erneute Veränderung des Spektrums beobachtet man in FSO₃H-SbF₅-SO₂, indem in diesem Lösungsmittel die NH-Absorption durch ¹⁴N-¹H-Kopplung in ein Triplett mit ¹J = 72 Hz aufgespalten ist. Diese Aufspaltung ist stark temperaturabhängig und verschwindet bei Temperaturen unterhalb -65° (Fig. 1, d-f). Dies steht im Einklang mit der Theorie [8], nach welcher bei tieferen Temperaturen die Quadrupolrelaxationszeit des ¹⁴N-Kerns kleiner wird, was zu wirksamerer Quadrupolrelaxation und Aufhebung der ¹⁴N, ¹H-Kopplung führt. In den Vinylresonanzen treten keine Veränderungen gegenüber FSO₃H auf, sie werden jedoch, je nach Messtemperatur, teilweise durch das Lösungsmittelsignal verdeckt.

Das Spektrum von Pyrimidin in CF₃COOH zeigt die gleiche chemische Verschiebung für H–C(4) und H–C(6). Dies kann bedeuten, dass die Verbindung monoprotoniert vorliegt und ein rascher Protonenaustausch zwischen den Positionen N(1) und N(3) stattfindet, oder dass das N(1), N(3)-Dikation gebildet worden ist. Die Verschiebungen der Vinylsignale und das Ansteigen der vicinalen Kopplungskonstante $J_{4,5} =$

 $J_{5,6}$ beim Übergang von CF₃COOH zu FSO₃H weisen jedoch darauf hin, dass hierbei ein weiteres Proton aufgenommen wird. In FSO₃H bei – 55° erscheinen zwei NH-Protonen, d.h. in diesem Lösungsmittel muss Diprotonierung erfolgen.

In CF₃COOH liegt deshalb praktisch nur das Monokation (1⁺) vor. Dies lassen auch die pKa-Werte für die erste und zweite Protonierung des Pyrimidins erwarten (pKa₁ = 1,31 [9], pKa₂ = -6,3 [4]), wenn man sie mit demjenigen der Trifluoressigsäure (pKa = 0,50 [10]) vergleicht. Ferner wird das 1-Methyl-2-aminopyrimidinium-Ion (8⁺) in CF₃COOH nicht protoniert (s. u.), wodurch obige Schlussfolgerung bestätigt wird. Beim Übergang von FSO₃H zu FSO₃H-SbF₅-SO₂ ändert sich der Protonierungszustand von 1 nicht.

2. 2-Aminopyrimidin (2). 2-Aminopyrimidin liegt auf Grund spektroskopischer Untersuchungen [6a] [11] in der symmetrischen Aminoform 2 vor. Die NMR.-Spektren in saurer Lösung (Fig.2a-b) ähneln sehr stark denjenigen des Pyrimidins. In CF_3COOH und CF_3COOH -SO₂ tritt ein A_2X -System für die drei Vinylprotonen auf. Zusätzlich erscheint eine breite Resonanz bei 8,05 ppm (2H), welche sich bei -55° zu einem Singulett verschärft. Die chemische Verschiebung entspricht den NH₂-Protonen eines Amidinium-Kations und folgt der von uns früher beschriebenen Korrelation

Fig. 2. NMR.-Spektren von 2-Aminopyrimidin (2) in a) CF_3COOH , 27°; b) FSO_3H , -55° 20

SubstanzLösungsmittelChem. Verschiebungen $H-C(4)$ $J\delta$ H $2-Amino D_2O$ $8,59$ 0 8 $2-Amino A\delta$ D_2O $8,59$ 0 8 $2-Amino A\delta$ CF_3COOH $8,74$ 0 8 $A\delta$ CF_3COOH $8,74$ 0 8 $+ 0,15$ $+ 0,15$ $A\delta$ FSO_3H $9,32$ 0 $9,32$ 0 $9,32$ 0 $1-Methyl D_2O$ B_2O B_2O $8,80$ $0,42$ $9,32$ 0 $1-Methyl D_2O$ B_2O B_2O $B,80$ $0,42$ $9,32$ 0 $2-Amino D_2O$ $B,50$ $B,52$ $0,41$ $8,52$ $0,41$ $8,52$ $0,41$ $8,52$ D_1Orid $B,52$ $0,41$ $B,52$ $0,41$ $8,52$ $0,41$ $8,52$		Tabelle 2.	NMRDate	n der Bas	en 2 und 8 +	und ihrer prot	onierten F	очтеп		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	substanz	Lösungsmitt	el Chem. Ve	erschiebur	ngen ð [ppm		Kopplu	ingskonsta	inten [Hz]	Spezies
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			H-C(4)	$d\delta$	H-C(6)	H–C(5)	J4,5	J _{5,6}	$J_{4,5}+J_{5,6}$	
$\begin{array}{cccccc} pyrimidin & A\delta & + 0,15 & + 0 & 8 \\ & & CF_{3}COOH & 8,74 & 0 & 8 \\ & & A\delta & + 0,58 & + 0 \\ & & FSO_{3}H & 9,32 & 0 & 9 \\ & & & & & & & & & & & \\ \hline & & & & & &$	-Amino-	D_2O	8,59	0	8,59	7,08	5,1	5,1	10,2	Base (2)
$\begin{array}{c ccccc} CF_{3}COOH & 8,74 & 0 & 8\\ A\delta & & +0,58 & +0\\ FSO_{3}H & 9,32 & 0 & 9\\ & & & & & & & & & \\ 1-Methyl- & & & & & & & & & & & \\ 1-Methyl- & & & & & & & & & & & & & & & & \\ &$	λrimidin Δδ		+0,15		+0,15	+0,15				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CF ₃ COOH	8,74	0	8,74	7,23	5,5	5,5	11,0	Monokation (2 ⁺)
FSO ₃ H 9,32 0 9 1-Methyl- D_2O 8,80 0,42 9 2-Amino- $A\delta$ $+0,28$ -0 -0 CF_3COOH 8,52 0,41 8 chlorid $A\delta$ $+0,75$ $+0,75$ $+0$	$d\delta$		+ 0,58		+0,58	+0,76				
1-Methyl- D_2O 8,80 0,42 9 2-Amino- $A\delta$ $+0,28$ -0 pyrimidinum- $A\delta$ $+0,28$ -0 chlorid CF_3COOH $8,52$ $0,41$ 8 $A\delta$ $+0,75$ $+0,75$ $+0$		FSO ₃ H	9,32	0	9,32	7,99	6,0	6,0	12,0	Dikation (2 ⁺⁺)
2-Amino- pyrimidinium- $A\delta$ +0,28 -6 chlorid CF ₃ COOH 8,52 0,41 8 $A\delta$ +0,75 +0	-Methyl-	D_2O	8,80	0,42	9,22	7,52	6,7	4,8	11,5	Monokation (8+)
chlorid $CF_{3}COOH 8,52 0,41 8$ $A\delta + 0,75 + 0$	Amino-		+0,28		-0,29	- 0,25				
<i>A</i> δ + 0,75 + 6	hlorid	CF ₃ COOH	8,52	0,41	8,93	7,27	6,6	4,9	11,5	Monokation (8+)
	$\delta \Delta$		+0,75		+0,33	+ 0,71				
FSO ₃ H 9,27 0,01 5		FSO ₃ H	9,27	0,01	9,26	7,98	6,4	6,4	12,8	Dikation (8++)

zwischen pKa-Wert und $\delta(NH_2)$ [1]. Die Protonierung erfolgt demnach, wie zu erwarten, am Ring. Die Äquivalenz der NH2-Protonen, auch bei tiefer Temperatur, sowie das Auftreten eines A₂X-Systems für die drei Vinylprotonen kann, wie bei 1 beschrieben, durch ein Monokation mit raschem Protonenaustausch oder ein N(1), N(3)-Dikation erklärt werden. Die folgenden Experimente entscheiden eindeutig zugunsten des Monokations. Das Spektrum von 1-Methyl-2-amino-pyrimidiniumchlorid (8+) wurde in D₂O, CF₃COOH und FSO₃H gemessen und ein Vergleich der chemischen Verschiebungen der Vinylprotonen und der vicinalen Kopplungskonstanten mit denjenigen von 2 vorgenommen (Tab. 2). Hierbei fällt auf, dass beim Übergang von D₂O nach CF_aCOOH bei 2 eine Verschiebung der Vinylsignale um + 0,15 ppm nach tieferem Feld, bei 8^+ jedoch um -0.25 bis -0.29 ppm nach höherem Feld erfolgt. Der Lösungsmitteleffekt $\Delta_{D,O}^{CF,COOH}$ – die verschiedene Tetramethylsilan-Standardisierung eingeschlossen – beträgt -0.30 ppm. Hieraus muss der Schluss gezogen werden, dass das Methylpyrimidinium-Ion 8+ in CF₃COOH nicht protoniert wird. Die den Stickstoffatomen benachbarten Vinylprotonen an C(4) und C(6) weisen sowohl in D_2O als auch in CF3COOH verschiedene chemische Verschiebungen auf. Die Differenz beträgt jedoch in beiden Fällen $\Delta \delta = \delta(H-C(6)) - \delta(H-C(4)) = (0.42 \pm 0.01)$ ppm. Auch hieraus ergibt sich, dass keine Protonierung in CF₃COOH erfolgt. In CF₃COOH liegen bei 8^+ die chemischen Verschiebungen von H–C(6) bei 8,93 ppm und von H–C(4) bei 8,52 ppm. Falls 2-Aminopyrimidin (2) im gleichen Lösungsmittel als Monokation vorliegt, in welchem das Proton zwischen N(1) und N(3) rasch ausgetauscht wird, ist zu erwarten, dass die beobachtete, gemittelte chemische Verschiebung von H-C(4) und H-C(6)etwa dem Mittelwert der Verschiebungen der entsprechenden Protonen in dem Methylpyrimidinium-Ion 8⁺ entspricht. Die für 2 gefundene Verschiebung (8,74 ppm) ist mit der gemittelten Verschiebung in 8^+ (8,72 ppm) zu vergleichen und bestätigt die Monokation-Struktur für 2-Aminopyrimidin in CF₃COOH. In FSO₃H (27°) zeigt 2-Aminopyrimidin gleichfalls ein symmetrisches Spektrum mit zwei Vinylresonanzen und einem Singulett für die Aminogruppe. Zusätzlich erscheinen jetzt zwei äquivalente NH-Protonen bei 12,1 ppm. Die Triplettstruktur der Protonen an C(4) bzw. C(6) zeigt zwei Spinkopplungen mit H-C(5) und H-N(1) bzw. H-N(3). Bei - 55° lässt sich die Kopplung mit den NH-Protonen auch in deren scharfem Dublettsignal nachwei-

sen. 2-Aminopyrimidin liegt also in FSO₃H als Dikation 2^{++} vor, und der Austausch der NH-Protonen ist gegenüber dem Monokation 2^+ in CF₃COOH wesentlich verlangsamt. Das Methylpyrimidinium-Ion 8^+ nimmt in FSO₃H ein Proton auf und geht in die dem Dikation 2^{++} analoge Spezies 8^{++} über. Dieses kommt deutlich in den sehr ähnlichen chemischen Verschiebungen von H-C(4) und H-C(6) in 8^{++} sowie beim Vergleich dieser Werte mit den entsprechenden von 2^{++} zum Ausdruck (Tab.2). In FSO₃H-SbF₅-SO₂ erfolgt keine wesentliche Änderung im Charakter des Spektrums von 2.

Die stufenweise Protonierung des 2-Aminopyrimidins 2 äussert sich auch in den Kopplungskonstanten der vielnalen Vinylprotonen (Tab.2). Hierzu vergleichen wir $\Sigma^{3}J = J_{4,5} + J_{5,6}$ in den verschiedenen Protonierungszuständen von 2 und 8⁺. Wäh-

Fig. 3. NMR.-Spektren von 2-Hydroxypyrimidin (3) in a) CF_3COOH , 27°; b) $CF_3COOH-SO_2$, -55° ; c), d) $CF_3COOH-SO_2$ bei -57° bzw. -60° , H-C(4,6); e) FSO_3H , -55°

rend für 2 in D₂O 10,2 Hz gefunden wird, erhöht sich Σ ³*J* bei Monoprotonierung auf 11,0 Hz und im Dikation auf 12,0 Hz. Das Methylpyrimidinium-Ion 8⁺ zeigt hingegen in D₂O und CF₃COOH den gleichen Wert (11,5 Hz), welcher bei der Protonierung zum Dikation auf 12,8 Hz ansteigt. In beiden Verbindungen nimmt somit Σ ³*J* bei der Aufnahme eines Protons um ca. 1 Hz zu.

3. 2-Hydroxypyrimidin (3). Aus Infrarot- und UV.-Studien [12] sowie Kernresonanzmessungen [6a] von 2-Hydroxypyrimidin (3) ist bekannt, dass diese Verbindung bevorzugt in der tautomeren 2-Oxo-1, 2-dihydropyrimidinform vorliegt. Das NMR.-Spektrum in Dimethylsulfoxid weist nur zwei Vinylresonanzen auf, woraus der Schluss gezogen wurde [6a], dass die beiden tautomeren Amidformen einem hinsichtlich der NMR.-Zeitskala raschen Protonenaustausch unterliegen. Aus IR.- und *Raman*-Spektren des Hydrochlorids wurde ferner die Protonierung am Stickstoff im Sinne von **3**⁺ abgeleitet [12g].

Die NMR.-Spektren von 3 in saurem Medium sind in Fig. 3a-e zusammengefasst. Wie bei 2 beschrieben, wird auch hier in CF₃COOH ein A_2X -System für die drei Vinylprotonen beobachtet. In CF₃COOH-SO₂ bei -55° erscheint zusätzlich ein breites, zwei Protonen entsprechendes Signal bei 12,35 ppm unter gleichzeitiger Verbreiterung der Dublettresonanz der Protonen an C(4) und C(6). Die Äquivalenz der Vinyl- und der NH-Protonen lässt sich gut mit einer monokationischen Struktur 3⁺ vereinbaren, deren gleichwertige mesomeren Grenzstrukturen die Symmetrie des Spektrums erklären. Eine höhere Protonierungsstufe ist unwahrscheinlich, wenn man den pKa-Wert von 3 (2,24 [13]) mit demjenigen von 2-Aminopyrimidin 2 vergleicht (3,54 [9]), welches erwiesenermassen nur monoprotoniert wird.

Eine Protonierung am Sauerstoff im Sinne von 3^+O kann ausgeschlossen werden. Das Spektrum von 3 in CF₃COOH-SO₂ bei -55° zeigt eine stark temperaturabhängige Linienverbreiterung (Fig. 3 b-d) des H-C(4, 6)-Signals bei 9,00 ppm, welche durch Doppelresonanz (Einstrahlung bei 12,35 ppm) als Spinkopplung identifiziert wurde. Bei raschem Austausch des Protons an N(1) bzw. N(3) und des OH-Protons in 3^+O könnte zwar die gleiche chemische Verschiebung für H-C(4) und H-C(6), aber keine Spinkopplung dieser Protonen mit benachbarten NH-Protonen erwartet werden. Bei langsamem Austausch hingegen ist diese Spinkopplung verständlich, es müssten aber gleichzeitig verschiedene chemische Verschiebungen für H-C(4) und H-C(6) sowie für NH- und OH-Protonen auftreten. Die gleiche chemische Verschiebung von H–C(4) und H–C(6) sowie die beobachtete Spinkopplung mit den NH-Protonen sprechen somit eindeutig für die Monokation-Struktur 3^+ .

Das Spektrum von 3 in FSO₃H zeigt die gleichen Signale des A_2X -Systems der Vinylprotonen wie im Lösungsmittel CF₃COOH. Es tritt nur eine geringe Verschiebung nach tieferem Feld auf. Berücksichtigt man die durch den Wechsel des Lösungsmittels bedingte Verschiebung von +0.27 ppm, so wandern das Proton an C(5) um +0.33 ppm nach tieferem Feld und diejenigen an C(4) bzw. C(6) um -0.04 ppm nach höherem Feld. Beim Abkühlen auf -55° tritt ein neues Signal bei 12,75 ppm als Dublett auf, welches mit demjenigen der Vinylprotonen an C(4) bzw. C(6) (Triplett, 9,55 ppm) gekoppelt ist. Das Dublett muss somit den beiden NH-Protonen zugeordnet werden. Bemerkenswert ist die starke Temperaturabhängigkeit der Vinylsignale, die gegenüber dem Spektrum bei Raumtemperatur nach tieferem Feld verschoben sind. Dieser Effekt kann wohl nur durch intermolekulare Substrat-Substrat- oder durch Substrat-Solvens-Assoziation bedingt sein. Die nur geringfügige Änderung des Spektrums von 3 beim Übergang von CF₃COOH zu FSO₃H stimmt gut mit der Ausbildung der dikationischen Spezies $3^{++}a$ überein. Wegen der Stabilität des symmetrischen Diazapentadienylium-Ions 3⁺ kann erwartet werden, dass die durch Protonierung der Carbonylgruppe erzeugte zusätzliche Ladung weitgehend auf dem Sauerstoff lokalisiert ist und somit keinen grossen Einfluss auf die chemische Verschiebung der Vinylprotonen ausüben kann. Der mesomeren Grenzstruktur 3++ b kommt somit nur eine sehr geringe Bedeutung zu. Die ähnliche elektronische Struktur des Pyrimidinrings in dem Monokation 3^+ und dem Dikation $3^{++}a$ kommt auch in den vicinalen Kopplungskonstanten der Vinylprotonen zum Ausdruck. In CF3COOH, FSO3H und $FSO_3H-SbF_5-SO_2$ wird stets der gleiche Wert, $J_{4,5} = J_{5,6} = 6,2$ Hz gefunden.

Wenn die Verbindung 3 im Gemisch $FSO_3H-SbF_5-SO_2$ gelöst wird, beobachtet man bei 27° und -55° Spektren, in welchen alle Signale verdoppelt sind, ohne dass der Habitus sich gegenüber den Spektren in CF₃COOH und FSO₃H ändert. Es tritt keine OH-Resonanz auf (vgl. hierzu 4⁺⁺, 5⁺⁺, 6⁺⁺, 7⁺⁺). Die Spektren deuten auf das Vorliegen *zweier* Spezies hin. In beiden Fällen zeigen H-C(4) und H-C(6) sowie H-N(1) und H-N(3) jeweils die gleichen chemischen Verschiebungen. Diese Erscheinung wird gegenwärtig durch Variation der Lösungsmittelzusammensetzung und der Temperatur näher untersucht.

4. 4-Hydroxypyrimidin (4). Auch für diese Verbindung ist auf Grund eingehender UV.- und IR.-spektroskopischer Messungen die Lactamform bewiesen worden [5]. Es konnte ferner durch einen Vergleich von 4 mit seinen beiden N-Methylderivaten gezeigt werden, dass das Neutralmolekül in Wasser als Gemisch der beiden tautomeren Lactamformen vorliegt [12e], vgl. auch [12f]. Falls dies auch für Dimethylsulfoxid-Lösungen gilt, zeigt das NMR.-Spektrum, dass zwischen beiden Formen ein rascher Protonenaustausch stattfindet. Ebenso wie bei 3^+ wurde aus UV.- [12e] sowie aus IR.- und Raman-Spektren [12g] die Monokation-Struktur 4^+ abgeleitet.

In Fig.4 finden sich die NMR.-Spektren der protonierten Formen von 4. In CF₃COOH (Fig.4a) erscheinen nur die drei Vinylsignale, während in CF₃COOH-SO₂ bei – 55° (Tab.1) die breite Resonanz eines NH-Protons auftritt. Da keine Spinkopplung mit einem benachbarten Vinylproton zu beobachten ist, kann eine Zuordnung

nicht getroffen werden. Betrachtet man jedoch die Grösse von $J_{5,6} = 8,0$ Hz³) sowie die Verschiebung der Vinylprotonen beim Übergang zu FSO₃H, so kann auf das Vorliegen des Monokations 4+ in CF₃COOH geschlossen werden (vgl. hierzu [12e, g]). Die Unsymmetrie des mesomeren Ions 4+ äussert sich in der verschiedenen Austauschgeschwindigkeit der beiden NH-Protonen, von denen in CF₃COOH-SO₂ bei - 55° nur eines sichtbar wird.

In FSO₃H und FSO₃H-SbF₅-SO₂ liegt das Dikation 4⁺⁺ vor. Wegen der auftretenden Verschiebungen der Vinylresonanzen im Gegensatz zu 3⁺⁺a (vgl. S.307), muss hier eine stärkere Delokalisierung der zusätzlichen, positiven Ladung in den Pyrimidinring im Sinne der aromatischen Struktur 4⁺⁺b erfolgen. Dies äussert sich auch in der vicinalen Kopplungskonstanten $J_{5,6}$, welche trotz der zusätzlichen Protonierung von 8,0 Hz in CF₃COOH auf 7,4 Hz in FSO₃H zurückgeht. Das in FSO₃H auftretende Signal bei 13,1 ppm kann auf Grund seiner Spinkopplung mit H-C(2) und H-C(6) (Doppelresonanzexperiment) dem Proton an N(1) zugeordnet werden. Das zweite NH-Proton erscheint erst bei – 55° und ist mit H-C(2) gekoppelt. Die unter diesen Bedingungen auftretenden Spinkopplungen beider NH-Protonen mit den vicinalen Vinylprotonen führen zur Triplettstruktur für H-C(2) und H-C(6). FSO₃H-SbF₅-SO₂ als Lösungsmittel gibt nur insofern eine Änderung des Spektrums, als eine zusätzliche

scharfe Resonanz bei 12,42 ppm (-55°) auftritt, welche der >C=OH-Gruppe zugeordnet werden muss [15]. In diesem Lösungsmittel sind somit alle Protonen des Dikations sichtbar und können eindeutig zugeordnet werden.

5. 2,4-Dihydroxypyrimidin (Uracil, 5). Die Diketo-Struktur für Uracil in fester und flüssiger Phase ist durch *Röntgen*-Struktur- [16], Infrarot- [12b, d], [17] und Kernresonanzuntersuchungen [3b, c], [18] gesichert. Den direktesten Beweis stellt die Bestimmung der ¹⁵N, H-Kopplungen des durch ¹⁵N zweifach substituierten Uracils dar [18c]. Für das in CF₃COOH protonierte Uracil sind chemische Verschiebungen der Ring-NH-Protonen publiziert worden [3b], ohne dass der Protonierungszustand der Molekel diskutiert wurde. Diese Frage, sowie die Struktur höherprotonierter Formen wird mit Hilfe der nachstehenden NMR.-Spektren (Fig. 5a, b) untersucht.

Das Spektrum in CF₃COOH weist zwei Vinyl- und eine NH-Resonanz auf. Das Signal bei 7,75 ppm zeigt Quartettstruktur und wird durch Bestrahlung des NH-Pro-

³⁾ Vinylprotonen α, β-ungesättigter Sechsringketone zeigen vicinale Kopplungskonstanten von 9-10 Hz [14], diejenige von γ-Pyridon beträgt 7,4 Hz. Eine ausgedehnte π-Elektronendelokalisierung, wie z. B. in der Base 4, führt zu einer relativ kleinen Kopplungskonstante J_{5,6} = 6,4 Hz. Der in CF₃COOH beobachtete Wert von 8 Hz zeigt, dass die Konjugation von N(1) mit der Δ^{5,6}-Doppelbindung durch die Protonierung und Ausbildung des resonanzstabilisierten Ions 4+ abgeschwächt ist.

Fig.4. NMR.-Spektren von 4-Hydroxypyrimidin (4) in a) CF_3COOH , 27°; b) FSO_3H , 27°; c) FSO_3H , -55°; d) FSO_3H -Sb F_5 -SO₂, -55°

tons bei 10,18 ppm zu einem Dublett vereinfacht. Diese beiden Signale müssen somit H–C(6) bzw. H–N(1) zugeschrieben werden. In CF₃COOH–SO₂ bei – 55° beobachtet man das zu erwartende Dublett für das H–N(1)-Signal sowie ein neues Singulett bei 11,06 ppm für H–N(3). Der langsame Austausch dieses Protons äussert sich auch in einer Verbreiterung des Dubletts für H–C(5), was auf eine Spinkopplung dieser Protonen zurückzuführen ist (vgl. ${}^{4}J_{3,5}$ in 2, 4, 6 und 7).

In FSO₃H bei 27° und -55° werden alle Signale des Uracils gegenüber den Spektren in CF₃COOH um +1,0 bis +1,3 ppm nach tieferem Feld verschoben (Tab.1), ohne dass sich der Habitus der Spektren ändert. Hieraus kann geschlossen werden, dass auch das Uracil beim Übergang von CF₃COOH nach FSO₃H in einen höheren Protonierungszustand übergeführt wird. Wegen der Diketo-Struktur der Uracilbase erfolgt die erste und zweite Protonierung formal auf den exocyclischen Sauerstoffatomen, so dass ein Unterschied im Spektrentyp von Monokation und Dikation nicht zu erwarten ist.

In $FSO_3H-SbF_5-SO_2$ wird das gleiche Phänomen der Verdopplung aller Signale des Uracils beobachtet, wie es schon bei 2-Hydroxypyrimidin (3) beschrieben wurde. Beide in dieser Lösung vorhandenen Spezies zeigen eine scharfe OH-Resonanz bei 12,18 und 11,75 ppm, wie sie auch in den Spektren von 4-Hydroxypyrimidin (4) in dem gleichen Lösungsmittel gefunden wurde. Diese Resonanz im Spektrum des Uracils

b) $CF_{3}COOH-SO_{2}$, -55°

 \times bezeichnet Rotationsseitenbanden des Lösungsmittelssignals

kann somit der HO=C(4)-Gruppierung zugeordnet werden. Das im Vergleich zu Verbindung **3** analoge Verhalten des Uracils in $FSO_3H-SbF_5-SO_2$ wird noch näher untersucht.

Da die chemischen Verschiebungen des Uracils sich in FSO_3H - SbF_5 - SO_2 und reiner FSO_3H nur wenig unterscheiden (Tab. 1), muss auch in FSO_3H das gleiche Kation vorliegen, welches auf Grund obiger Befunde als 5⁺⁺ formuliert wird. Für das in CF_3COOH zu erwartende Monokation können dann die beiden Spezies 5⁺*I* und 5⁺*II* diskutiert werden.

Die oben erfolgte Zuordnung der einen, beobachteten OH-Resonanz (HO=C(4)) in dem Dikation 5^{++} zeigt, dass das Proton der HO=C(2)-Gruppierung auch bei -55° einem raschen Austausch unterliegt. Hieraus ist zu schliessen, dass das Proton der sichtbaren OH-Resonanz wesentlich fester gebunden ist, d. h. am basischeren Zentrum haftet. Für das Monokation ist deshalb ebenfalls anzunehmen, dass die Protonierung an der O=C(4)-Gruppe stattfindet. Da in diesem Ion (5+I) eine bessere Delokalisierung der positiven Ladung erfolgen kann als in 5+II, ist dies verständlich. Die Zuordnung der Struktur 5+I für das Monokation wird auch durch die bekannte Deprotonierung des Uracils an N(1) gestützt, wobei das entstandene Monoanion 5⁻ in analoger Weise stabilisiert wird [17].

6. 2-Hydroxy-4-aminopyrimidin (Cytosin, 6). Als wichtiger Bestandteil der Nucleinsäuren ist diese Base bereits besonders eingehend mit Hilfe spektroskopischer Methoden untersucht worden [19] [3b, 3d]. Das NMR.-Spektrum wurde zuerst im Sinne einer zwitterionischen Struktur interpretiert [3c]. Eine Diskussion der mannigfachen tautomeren Formen der Neutralmolekel ist dann anhand von UV.-Spektren der Base und ihrer 1-Methyl- und 3-Methylderivate geführt worden [3d]. Die Ergebnisse zeigen jedoch, dass Cytosin bevorzugt in der tautomeren Form 6 vorliegt, was unter Berücksichtigung der pKa-Werte bestätigt wurde [19c]. Protonenresonanzspektren des Cytosins und seiner Methylderivate sind bisher in den folgenden Lösungsmitteln untersucht worden: D_2O [3a], CD_3SOCD_3 [3c, e, f], CF_3COOH [3b, d] und SO_2 [3e, f]. In diesen Arbeiten wurden die Strukturen der Neutralmolekel 6 und des Monokations 6⁺ untersucht, und die Ergebnisse stehen im Einklang mit denjenigen aus UV.-Messungen. Im Rahmen der vorliegenden Studie über mehrfache Protonierung von einfachen Pyrimidinen haben wir das Spektrum von Cytosin (6) nochmals in CF₃COOH und CF₃COOH-SO₂ bei – 55° gemessen. Diese Spektren sind in Fig. 6 a und 6 b abgebildet. Ausser den Signalen der Vinylprotonen und den beiden Singuletten der nichtäquivalenten Protonen der NH₂-Gruppe erscheint nur eine NH-Absorption (breites Singulett bei + 27°, Dublett bei – 55°), welche nach Doppelresonanzexperimenten dem Proton an N(1) zugeordnet werden muss. Das Signal von H-C(6) erscheint infolgedessen bei langsamem NH-Austausch (– 55°) als doppeltes Dublett. Die chemische Verschiebung der NH-Protonen wird durch den Zusatz von SO₂ stark beeinflusst, was besonders die relative chemische Verschiebung der Protonen der NH₂-Gruppe vergrössert.

 $FSO_{3}H$ als Lösungsmittel (Fig.6c) bewirkt eine deutliche Verschiebung der Vinylresonanzen nach tieferem Feld und eine starke Verbreiterung der NH₂-Resonanz, welche erst bei tiefer Temperatur (Fig.6d) in ein Dublett aufgespalten wird. Gleichzeitig wird das Signal eines weiteren NH-Protons bei 10,97 ppm sichtbar und kann auf Grund seiner Singulettstruktur eindeutig H–N(3) zugeordnet werden. Beim Übergang zum FSO₃H–SbF₅–SO₂-Gemisch bleibt der Charakter des Spektrums erhalten, und die Temperaturerniedrigung bewirkt eine Verschärfung aller NH-Signale. Zusätzlich erscheint nunmehr die OH-Resonanz als scharfes Singulett bei 11,34 ppm (vgl. hierzu das Spektrum von **4**, Fig.4d).

Die NMR.-Spektren von Cytosin in CF₃COOH stehen mit der Formulierung eines Kations 6⁺ im Einklang. Da das Proton an N(1) eindeutig identifiziert wurde, ist 6⁺O das einzige alternative tautomere Monokation mit einer NH₂-Gruppe, dessen Bildung jedoch infolge der vorhandenen Amidin-Gruppierung in 6 noch unwahrscheinlicher ist als im Falle von 3 (3⁺O). In FSO₃H–SbF₅–SO₂ liegt Cytosin als Dikation 6⁺⁺ vor, und die Resonanzen aller Protonen können im NMR.-Spektrum eindeutig zugeordnet werden. Dieses ist stark temperaturabhängig und zeigt nur bei – 55° das OH- sowie scharfe NH-Signale. Bei 27° werden die gleichen Signale und chemischen Verschiebungen wie in FSO₃H bei – 55° beobachtet (Tab. 1), so dass der Protonierungszustand des Cytosins in diesen beiden Lösungsmitteln gleich ist. Das Signal der NH₂-Gruppe ist nur bei tiefer Temperatur in ein Dublett aufgespalten, während bei Raumtemperatur eine starke Austauschverbreiterung auftritt.

Das Spektrum von Cytosin in stark saurer Lösung zeigt, dass auch unter diesen Bedingungen keine Ammoniumgruppierung $-NH_3^+$ ausgebildet wird. Eine NH_3^+ -Resonanz ist entweder durch ein Triplett mit Intensitätsverhältnis 1:1:1 oder eine breite, drei Protonen entsprechende Absorption gekennzeichnet. Die Erscheinungsform ist durch die Austauschgeschwindigkeit der Protonen und die ¹⁴N-Quadrupolrelaxation bestimmt (vgl. S.304). Da das Cytosin-dikation zwei NH-, eine NH_2^- und eine OH-Resonanz zeigt, sind tautomere Ammoniumformen [3c] innerhalb der Nachweisbarkeitsgrenze der NMR.-Spektroskopie auszuschliessen.

Die relativ grosse Kopplungskonstante $J_{5,6} = 7,7-8,0$ Hz im Dikation zeigt, dass der Form $6^{++}a$ grösseres Gewicht als der «aromatischen» Form $6^{++}b$ zukommen muss. Die Lokalisierung der positiven Ladung auf dem exocyclischen Stickstoffatom folgt aus der möglichst grossen Ladungstrennung und erleichtert den Austausch der NH₂-Protonen. Dies äussert sich in der ungewöhnlichen Linienbreite der NH₂-Resonanz bei Raumtemperatur.

7. 2-Amino-4-hydroxypyrimidin (Isocytosin, 7). Diese Verbindung ist insbesondere als Strukturelement von Guanin und einer grossen Zahl von Pterinen von Bedeutung. Im Rahmen unserer Untersuchungen über die Protonierung dieser Verbindungen [1] [2] [20] ist das Verhalten des Pyrimidinringes in stark saurem Medium interessant. Die Struktur der Base ist in wässriger Lösung bereits durch UV.-Messungen untersucht worden, wobei in ähnlicher Weise wie bei 4-Hydroxypyrimidin (4) auf die Anwesenheit der beiden tautomeren Formen 2-Amino-4-oxo-3,4-dihydropyrimidin und 2-Amino-4-oxo-1,4-dihydropyrimidin geschlossen wurde [21]. Einzelne NMR.-Daten von Isocytosin [3b] [20], sowie substituierter Verbindungen [22] sind bekannt.

Das NMR.-Spektrum in CF₃COOH (Fig.7a) zeigt die Absorptionen der beiden Vinylprotonen als Dublette und diejenige der Aminogruppe als breites Singulett. In CF₃COOH-SO₂ bei – 55° (Fig.7b) ist das Spektrum wesentlich informativer, da eine weitere NH-Resonanz als Dublett auftritt, welche auf Grund der Kopplung mit H–C(6) dem Proton an N(1) zugeordnet wird. Die Nichtäquivalenz der Protonen der NH₂-Gruppe äussert sich in zwei scharfen Singuletten bei 7,82 und 8,24 ppm. Auch hier kann, ebenso wie bei Cytosin, keine Spinkopplung zwischen den geminalen NH-Protonen aufgelöst werden.

 FSO_3H bewirkt eine deutliche Verschiebung der Vinylresonanzen nach tieferem Feld (Fig. 7 c, 7 d). Bei 27° erscheint ein NH-Proton bei 11,55 ppm, welches keine Spinkopplung mit vicinalen Vinylprotonen aufweist (Doppelresonanz) und deshalb H–N(3) zugeordnet wird, während bei – 55° das bereits beschriebene Dublett von H–N(1) bei

10,75 ppm beobachtet wird. Die Triplettstruktur von H–C(6) in beiden Fällen zeigt jedoch, dass der Austausch von H–N(1) auch bei Zimmertemperatur nur langsam erfolgt. In FSO_3H –SbF₅–SO₂ sind die beiden NH-Protonen am Ring nebeneinander nachweisbar, und es tritt ein zusätzliches Signal bei 11,55 ppm auf, das durch die starke Verschärfung bei – 55° (Fig. 7e) als OH-Resonanz identifiziert werden kann. In diesem Lösungsmittelgemisch können ferner weitreichende Spinkopplungen der Ringprotonen beobachtet werden, welche durch Doppelresonanzexperimente zugeordnet und in Tab.1 aufgeführt sind.

Die Interpretation der Spektren des Isocytosins kann in ähnlicher Weise erfolgen wie bereits bei Cytosin beschrieben. Die Protonierung der beiden in wässriger Lösung UV.-spektroskopisch nachgewiesenen tautomeren 4-Oxoformen führt in CF₃COOH zum Kation 7⁺. Da das Proton an N(1) nachweisbar ist und die Kopplungskonstante der vicinalen Vinylprotonen $J_{5,6} = 8,0$ Hz beträgt, können andere tautomere Formen für das Monokation ausser Betracht gelassen werden. Diese Formulierung entspricht derjenigen des Monokations 4⁺, welches erwartungsgemäss durch die zusätzliche Aminogruppe in 2-Stellung weiter stabilisiert wird. Die Ähnlichkeit der Spektren in FSO₃H-SbF₅-SO₂ und FSO₃H, sowie die Nachweisbarkeit aller Protonenresonanzen beweist das Vorliegen des Dikations 7⁺⁺ in diesen Lösungsmitteln. Im Isocytosin-dikation wird eine Abnahme von $J_{5,6}$ gegenüber dem Monokation beobachtet, welche bereits in den Spektren von 4 beschrieben wurde. Auch im Falle des Isocytosins bedeutet dies, dass die $\Delta^{5,6}$ -Doppelbindung im Dikation stärker delokalisiert ist als im Monokation.

Wir danken dem Schweizerischen Nationalfonds für die Unterstützung dieser Arbeit.

Experimentelles. – Alle verwendeten Pyrimidine sind Handelsprodukte (Fluka AG) und zeigen ohne zusätzliche Reinigung im NMR.-Spektrum keine Signale von Verunreinigungen. 2-Hydroxypyrimidin (3) wurde aus dem Hydrochlorid gewonnen und mehrmals aus Methanol/ Benzol umkristallisiert. 1-Methyl-2-amino-pyrimidiniumchlorid ist aus der Base durch Umsetzen mit Methyljodid und Ionenaustausch des Anions gewonnen worden; nach Umkristallisieren aus Wasser/Äthanol, Smp. 278° (Zers.). Die Lösungsmittel CF_aCOOH und FSO₃H (Fluka AG) wurden durch fraktionierte Vakuumdestillation gereinigt. FSO₃H wurde anschliessend in 0,5-ml-Portionen eingeschmolzen, in denen sie sich bei -20° über längere Zeit ohne Zersetzung aufbewahren lässt. Ein Standard-Gemisch, bestehend aus SbF₅ (Schuchardt, dest.) und FSO₃H wurde unter Stickstoff im Gewichtsverhältnis $FSO_{3}H$: $SbF_{5} = 2,2:1$ (Molverhältnis 4,8:1) hergestellt. Die Zusammensetzung unseres FSO₂H-SbF₅-SO₂-Gemisches weicht insofern von derjenigen ab, welche von Olah *et al.* beschrieben ist [23], als die Konzentration von SbF_5 wesentlich geringer ist. Höhere SbF_5 -Konzentrationen bedingen eine Verschlechterung der Auflösung in den erhaltenen Spektren. Schwefeldioxid hat man über Phosphorpentoxid getrocknet, die Substanz in CF_aCOOH bzw. FSO_aH-SbF₅ vorgelegt und die Verflüssigung im Messröhrchen vorgenommen. In beiden Fällen wurde die Lösung dadurch auf das doppelte Volumen verdünnt. Von der FSO₃H-SbF₅-SO₂-Lösung wurden jeweils zwei Proben hergestellt, deren chemische Verschiebungen innerhalb der Fehlergrenzen übereinstimmten. Die Substratkonzentration betrug in allen Lösungsmitteln 0,4 m.

Die NMR.-Spektren wurden mit einem Varian-HA-100-(MHz)-Gerät aufgenommen, normale Messtemperatur 27°. Die Tieftemperaturmessungen erfolgten mit Hilfe einer Temperaturkontrolleinheit V4343. Zur Temperatureichung (\pm 3°) diente in üblicher Weise die relative chemische Verschiebung der Hydroxyl- und Methylprotonen einer Methanolprobe. Doppelresonanzexperimente hat man nach der frequency-sweep Methode ausgeführt. Die chemischen Verschiebungen sind auf \pm 0,01 ppm angegeben, die Linienpositionen der breiteren NH-Signale wurden auf die nächsten 0,05 bzw. 0,10 ppm auf- oder abgerundet. Die Kopplungskonstanten gelten \pm 0,1 Hz.

LITERATURVERZEICHNIS

- [1] A. Dieffenbacher & W.von Philipsborn, Helv. 52, 743 (1969).
- [2] A. Dieffenbacher, R. Mondelli & W. von Philipsborn, Helv. 49, 1355 (1966).
- [3] a) C. D. Jardetzky & O. Jardetzky, J. Amer. chem. Soc. 82, 222 (1960). b) O. Jardetzky, P. Pappas & N.G. Wade, ibid. 85, 1657 (1963). c) J. P. Kokko, J.-H.Goldstein & L. Mandell, ibid. 83, 2909 (1961). d) A. R. Katritzky & A. J. Waring, J. chem. Soc. 1963, 3046. e) H. T. Miles, R. B. Bradley & E. D. Becker, Science 142, 1569 (1963). f) E. D. Becker, H. T. Miles & R. B. Bradley, J. Amer. chem. Soc. 87, 5575 (1965).
- [4] D. J. Brown, "The Chemistry of Heterocyclic Compounds: The Pyrimidines», Interscience Publishers, J. Wiley & Sons, New York, London 1962.
- [5] A. R. Katritzky & J. M. Lagowsky, «Advances in Heterocyclic Chemistry», Vol. 1 (1963), S. 368-371.
- [6] a) S.Gronowitz & R.A.Hoffman, Arkiv Kemi 16, 459 (1960). b) G.S. Reddy, R. T. Habgood & J.H.Goldstein, J. Amer. chem. Soc. 84, 336 (1962).
- [7] a) J.B.Merry & J.H.Goldstein, J. Amer. chem. Soc. 88, 5560 (1966). b) R.Mondelli & L.Merlini, Tetrahedron 22, 3253 (1966).
- [8] J.A. Pople, Mol. Physics 1, 168 (1958).
- [9] A. Albert, R. Goldacre & J. Phillips, J. chem. Soc. 1948, 2240.
- [10] J.L. Kurz & J.H. Farrar, J. Amer. chem. Soc. 91, 6057 (1969).
- [11] D. J. Brown, E. Hoerger & S. F. Mason, J. chem. Soc. 1955, 4035.
- [12] a) J. R. Marshall & J. Walker, J. chem. Soc. 1951, 1004. b) L. N. Short & H. W. Thompson, ibid. 1952, 168. c) M. P. V. Boarland & J. F. W. McOmie, ibid. 1952, 3716. d) D. J. Brown & L. N. Short, ibid. 1953, 331. e) D. J. Brown, E. Hoerger & S. F. Mason, ibid. 1955, 211. f) Y. Inoue, N. Furutachi & K. Nakanishi, J. org. Chemistry 31, 175 (1966). g) E. Spinner, J. chem. Soc. 1960, 1226.
- [13] D. J. Brown, Nature 165, 1010 (1950).
- [14] W. Regel & W. von Philipsborn, Helv. 51, 867 (1968); 52, 1354 (1969).
- [15] G.A. Olah, M. Calin & D.H. O'Brien, J. Amer. chem. Soc. 89, 3586 (1967).
- [16] G.S. Parry, Acta cryst. 7, 313 (1954).
- [17] C.L. Angell, J. chem. Soc. (1961), 504.
- [18] a) J. P. Kokko, L. Mandell & J.H.Goldstein, J. Amer. chem. Soc. 84, 1042 (1962). b) S.Gronowitz, B.Norrman, B.Gestblom, B.Mathiasson & R.A. Hoffman, Arkiv Kemi 22, 65 (1964). c) B.W. Roberts, B.Lambert & J.D. Roberts, J. Amer. chem. Soc. 87, 5439 (1965).
- [19] a) D. Shugar & J. J. Fox, Bioch. Biophys. Acta 9, 199 (1952). b) Ch. A. Dekker in «Annual Review of Biochemistry», J. M. Luck, F. W. Allen & G. Mackinney, Ed., 29, 453, Annual Reviews Inc., Palo Alto 1960. c) D. J. Brown & J. M. Lyall, Austr. J. Chemistry 15, 851 (1962).
- [20] A. Dieffenbacher, Dissertation Universität Zürich (1967).
- [21] D. J. Brown & T. Teitei, Austr. J. Chemistry 18, 559 (1965).
- [22] B.K. Snell, J. chem. Soc. 1968, 2358.
- [23] G.A. Olah & A.M. White, J. Amer. chem. Soc. 90, 6087 (1968).